Question

A block of mass m = 0.1kg is connected to a spring of unknown spring constant k. It is compressed to a distance x from its equilibrium position and released from rest.

After approaching half the distance $\left(\frac{x}{2}\right)$ from equilibrium position, it hits another block and comes to rest momentarily, while the other block moves with a velocity 3ms^{-1} . The total initial energy of the spring is :

A	1.5 J		
В	0.8 J		
C	0.3 J		
D	0.6 J		
E	0.7 J		

Solution

Solution

Correct option is D) Apply principle of conservation of

Momentum before collision = Momentum after collision

 $0.1u + m \times 0 = 0.1 \times 0 + m \times 3$

momentum and energy

 $\frac{1}{2} \times 0.1 \times \mathbf{u}^2 = \frac{1}{2} \times \mathbf{m} \times 3^2$

Solving these two equations y = 3

Solving these two equations, u = 3

 $\frac{1}{2}kx^2 = \frac{1}{2}k(\frac{x}{2})^2 + \frac{1}{2} \times 0.1 \times 3^2$

 $\frac{3}{4}\mathbf{k}\mathbf{x}^2 = 0.9$

 $\frac{1}{2}kx^2 = 0.6J$